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ABSTRACT 

Different ways of randomizing have been compared by various authors. An ap- 
parent discrepancy between the results stated by game theorists and those 
stated by statisticians is clarified here, and Kuhn's theorem on the necessity of 
perfect recall for the equivalence of two ways of randomizing is extended 
beyond countable cases. 

1. Introduction 

There are two different ways of  introducing into a game the option of  random- 

izing. In a game, given in its extensive form, we may permit a player to let 

his moves depend on extraneous random devices, or, normalizing the game first 

by introducing the set of  (pure) strategies, the player may be permitted to choose 

an element of this set by employing a random device. It is only natural to enquire 

whether one of these two ways enables the player to achieve something not attain- 

able through the other way. 

This question has been studied successfully by a number of  authors, and the 

results have passed into the realm of  the well known. There is, however, a dis- 

turbing feature to the general knowledge: there is no agreement as to which 

direction of  the question is trivial. This disagreement emanates from the original 

papers [1], [8-], and some clarification seems in order. A portion of  this paper 

is devoted to such a clarification, and it is followed by a new result, an extension 

of  a converse theorem of Kuhn [6, Th. 4] to a more general setting. 

For finite games, the problem of  equivalence of  the two ways of randomizing 

was settled by Kuhn [6], who introduced the concept of  perfect recall, and proved 
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its necessity and sufficiency for the equivalence of the two ways of randomizing. 

For games where perfect recall does not hold, randomizing the second way (that 

is, choosing a strategy at random) is more general. 

Meanwhile, Wald and Wolfowitz [8] studied the problem in a setting more 

restricted in one sense and more general in another sense. Their result is estab- 

lished only for statistical games, and therefore the information structure has 

special simplifying features, but their information and action spaces include un- 

countable spaces. Subsequently, Kuhn's result on the sufficiency of perfect recall 

was generalized to the uncountable case by Aumann [1], who introduced appro- 

priate definitions of randomization and of perfect recall for the uncountable 

setting. In terms of these definitions, randomization, while the game is in process, 

appears as a special case of choosing a strategy at random; the nontrivial part of 

the equivalence result consists of the fact that for perfect recall the greater gene- 

rality of choosing a strategy at random is spurious. This is in striking contrast, 

not only to the terminology used by Wald and Wolfowitz, who follow von Neu- 

mann in calling randomization during the game 9eneral and randomization 

while choosing a strategy special, but also to the fact that in [8] the greater 

generality of general versus special is assumed to be self-evident, and the bulk 

of the paper is devoted to establishing the other direction of the equivalence, 

the one that becomes the trivial direction in terms of Aumann's definitions. Part 

of it is an attempt to untangle this discrepancy, by presenting Aumann's concepts 

and results, and comparing them with those of Wald and Wolfowitz. This is 

followed by a proof of the necessity of perfect recall in a setting that augments 

Aumann's by further measurability assumptions. Finally, convexity, the raison 

d'etre of randomization, is brought into the picture. Some of the difficulties that 

appear when the moves of a game are permitted to occur at a set of times more 

general than the (well-ordered) positive integers, are faced in a forthcoming 

paper [4]; relations between the equivalence of ways of randomizing and the study 

of martingales and stopping times are also explored in [4]. 

2. Basic definitions 

We retain most of Aumann's notation as well as the idea of a game normalized 

for all players but one, but we leave aside the payoff structure, which is not needed 

here. We use only one copy I of the unit interval, endowed with the Borel 
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measurability structure, to serve in the role of information space and action space 

for all moves. Here a game  consists, therefore, of an abstract set Z ,  the set of 

strategies of  the opponents, and a sequence of information funct ions g~,g2, "'" 

where g~ is a function from Z x I ~- 1into I, and is measurable for each fixed 

z ~ Z.  Intuitively, the player plays against a fixed z,  unknown to him, and has 

to make his ith move by choosing Yi ~ I on the basis of knowing the numbers i 

and g~(z, Yl, "",Y~-1). Note that a fixed z represents not only the strategies that 

the other players have chosen, but also the strategy of chance as it acts in chance 

moves and in randomization devices that the other players may choose to use. 

In a statistical game, for example, z would determine not only the state of nature, 

but also the outcome of any sampling variable. 

A game is of  perfect recall, if for i = 1,2,. . .  there exist measurable recall 

functions,  that is, functions u i and ti, from I into I, such that u,(g~+ l(z, y~,. . . ,  y,)) 

= y, and ti(g,+l(z, y l ,  "",Yi)) = gi(z, Yl,  " " , Y i - t )  identically on Z x I i. (Com- 

positions of subsequent u~ and t, are named in [1 ], but it is not necessary to assume 

their existence separately.) Perfect recall is implied by the stronger property of 

perfect information, a property that cannot be defined in this framework of games 

normalized for the opponents of one player. 

A (pure) strategy tbr a given game is a sequence m of measurable functions 

ml, m2,"" from I into I .  If  the player uses m, and the opponents have chosen z ,  

the player's moves Yl, Y2, "'" are defined inductively by y, = m,(g~(z, Y l , " ' ,  Y,-  1)). 

Thus for given m, a mapping from Z to sequences (Yl,Y2, ' " )  is defined; we call 

it the effect of m. 

3. Random, behavior, and randomization strategies 

Let f~ be I endowed with Lebesgue measure, and interpret it as the random 

device used by the player to choose a strategy at random. Alluding to the term 

random function we define a random strategy m as a sequence m D m 2 , . . ,  of 

measurable functions from f~ x I into I .  It can be regarded as a pure strategy- 

valued random variable on t ) ,  or as a real-valued, measurable stochastic process, 

indexed by the pairs (i, g) with g e I .  The (finite) jo in t  distributions of a random 

strategy are the joint distributions of  the real-valued random variables m~(., g) 

for finitely many pairs (i, g) at a time. In addition to the usual compatibility 

relations between these joint distributions, further constraints are imposed on 

them by the assumed measurability of the stochastic process, that is, by requiring 
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each m i to be jointly measurable in co e f~ and g e I .  There can never arise, for 

example, joint distributions under which every two m,( . ,  g) are independent, 

or even uncorrelated [1]. There exist, however, random strategies whose mi(",  g) 

are independent for pairs (i, g) with different i; more precisely: a random strategy 

is a behavior strategy if for any g~, i = 1 ,2 , . . . , n ,  j = 1,2,.- ,k  the random 

vectors 

Vt = ( m l ( ' , g l l ) , ' " , m l ( ' , g , k ) )  

vn = ( ran( ' ,  gnt), '",m.(" ,gnk)) 

are independent. (This is only assumed for two vectors with one component 

each in the original definition [1], but the results show that this stricter definition 

was intended; only with our corrected definition the following holds:) The be- 

havior strategies are precisely those random strategies for which it is possible 

to replace fl by a sequence of  independent copies tai, and to use a separate one 

for each move i, without altering the joint distributions of the strategy. Thus, 

while in general the randomization device t) must be operated before the game 

starts, when a behavior strategy is played, part ~i of  the device may be operated 

just before making the ith move. There is a different kind of strategy, which 

can only be used this way, randomizing for each move after the information 

available for making this move has been received. We call it a randomization 

strategy, and define it as a sequence #1,/~2,"" of measurable functions from I 

into the set of probability measures on I .  The player uses it by choosing his ith 

move according to the distribution Pi(g) if his information prior to this move 

was g,  independently of anything else that may have occurred earlier. 

4. Effective distributions and e~Tective equivalence 

For a pure strategy, its effect was defined as the rule that associated with each 

strategy z of the opponents, the sequence of moves yj that the given pure strategy 

will lead the player to perform. Similarly, a random strategy m determines a 

random effect, which associates with each z the random sequence Yt,Y2,"" 

defined by putting for each o~ E fl inductively 

y,(co) = m(co, at(z, yl((o),-.., y,_ l(c~))). 

The effective distribution of m is the rule which associates which each z the 

distribution of the random sequence Yt,Y2,"" that m and z determine. While 
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the effective distribution of a random strategy is fully determined by the joint 

distributions of the strategy, the converse is usually false. Strategies with different 

joint distributions may be effectively equivalent, that is, their effective distribu- 

tions may be the same. 

Randomization strategies determine their effective distribution differently. For 

each z we first define the transition probabilities (to be regarded as the conditional 

distributions of y~ given Yl, "", Y~-1) as the measures I~(g,(z, yl, "", y~-1)). These 

transition probabilities uniquely determine for each z a distribution for the sequence 

Y l , Y 2 , "  (see, for example, [7-]). 

The problem of equivalence of different ways of randomization can now be 

stated : 

A. For every given random strategy, is there an effectively equivalent ran- 

domization strategy? 

B. For every given randomization strategy, is there an effectively equivalent 

random strategy? 

5. The results and their sources 

The effective equivalence of random and randomization strategies was studied 

by Aumann [1"] through the intermediary concept of behavior strategies. His 

version of Kuhn's theorem states that for a game of perfect recall, for every 

random strategy there is an effectively equivalent behavior strategy. As stated, the 

theorem asserts nothing about randomization strategies; it does assert a tautology 

for games where the player moves only once, since in this case every random 

strategy is a behavior strategy. Furthermore, since a behavior strategy is a special 

random strategy, there is no other direction to prove. However, the proof of the 

theorem contains more than its statement reveals. Paragraphs 6 and 8 essentially 

contain a proof of the fact that in a game of perfect recall, for every random 

strategy there is an effectively equivalent randomization strategy. Paragraph 7 

essentially proves that in games where the player moves only once, there is for 

every randomization strategy an effectively equivalent random strategy. In para- 

graph 8 a sequence of such random strategies, one for each step of the game, are 

combined to form a behavior strategy. Joining these results, we obtain not only 

Aumann's version of  Kuhn's  theorem, but also an affirmative answer to (A) 

for games of perfect recall, and an affirmative answer to (B) for all games. This 

is made clear in Figure l, where an arrow between boxes symbolizes the relation 
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"for every element of the first box there exists an effectively equivalent element 

of the second box". 

PERFECT RECALL 

/ " I RANDOM STRATEGIES [ 
BEHAVIOR STRATEGIES I ALL GAMES RANDOMIZATION I J STRATEGIES 

Fig. 1 

Since Paragraph 7 uses the order structure of I ,  rather than just its measura- 

bility structure, its conclusion can be generalized to games with separable complete 

metric action spaces only by invoking the Borel-isomorphism of such spaces 

with I. Wald and Wolfowitz [8] do not use the isomorphism result when they 

prove such a generalization of the lower arrow of the diagram, and need there- 

fore a more complicated construction than is used in Paragraph 7 by Aumann. 

Since they deal with (sequential) statistical games, perfect recall is built into 

their definitions, and consequently the upper arrow holds. Its proof for this special 

case can be somewhat simplified, by making use of the fact that the only cases 

where the player must make a move in such games are the cases when all his 

past moves have been "continue", and so the infiniteness of the action space is 

never relevant for the past. Still, the claim that the upper arrow "follows at once 

from the definitions" [8] can hardly be supported and the application of von 

Neumann's terms ("special randomization" for random strategies, and "general 

randomization" for randomization strategies) to games with uncountable action 

and information spaces is only justified ex post Aumann.  

Kuhn's original theorem [6] deals with the finite case, and states the appro- 

priate special case of Aumann's result. His construction, however is different. 

In choosing the joint distribution for a random strategy with given effective 

distribution, Kuhn lets the m~(', g), for fixed i and different g, be independent. 

This is impossible in the uncountable context, and Aumann, Wald and Wolfo- 

witz let all such m~(-, g) be monotone functions of each other. 

The ingenious construction in Blackwell and Girshick's book [2] establishes 

what can be done in fixed-sample-size statistical games when the player is 

restricted to using discrete randomization devices. 

The necessity of perfect recall for the upper arrow was established by Kuhn 1-6] 

for the finite case. For the present framework, it is discussed below. 
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6. R-games anti the necessity of ~rfeet recall 

Consider a game where Z - - I ,  gl is nonmeasurable one-to-one I onto I ,  

and g2 is a Borel isomorphism of I x I onto I .  The nonmeasurability of gt is 

permitted, since the 9~ are assumed measurable for fixed z only. There exists a 

unique recall function tl for recalling at namely, tt is the composition of g~ with 

the first coordinate of the inverse of 92. But this t~ is nonmeasurable, and the 

game not of perfect recall. For this game there exists a random strategy, for which 

an effectly equivalent randomization strategy can be found only if we permit 

the latter to be nonmeasurable. For o9 and g in I ,  define 

ml(og, g ) = g + og(mod 1) 

m2(o9,9) = 1 + ul(g) - og(mod 1) 

where u~, the function for recalling Yl is the (measurable) second coordinate 

of the inverse of  92. For any z,  the first move of the strategy is uniformly distri- 

buted on I ,  and the second move is gl(z)  for all ~. The only effectively equiv- 

a!ent randomization strategy would be 

,ui(9) = Lebesgue measure on I 

P2(9) = measure 1 at the point q(9)  

but here P2(" ) is nonmeasurable. 

This sort of  pathology can be ruled out by adding further measurability assump- 

tions, still without assuming a structure on Z.  Consider the recall relations 

U, = {(o~+~,yi) l(z, y l , " ' , y , ) ~ z  x I i} and 

T~ = {(o,+,,v,) l ( z , y~ ," ' , y , )EZ • I '} 

which arise from the given information functions g~. The game is of perfect 

recall if these relations are measurable functions, but we can separate the question 

of their measurability from their functionhood and assume measurability of the 

recall relations, whether they are functions or not. The recall relations are mea- 

surable if we assume that g~+~(Z x Bi) is measurable for any Borel set B~ = I i, 

and gl+~(g71(B) x I) is measurable for any Borel set B c  I .  We call a game 

for which these assumptions hold an R-game,  and prove for such games the fol- 

lowing theorem. 
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THEOREM. If in an R-f lame every random strategy has an effectively equiv- 

alent randomizat ion strategy, the f lame is o f  perfect recall. 

PROOF. Recall functions can be found for an R-game, unless its information 

functions fail to "separate different past histories". This means that one of the 

following holds: 

a. There are z , y~ , . . . , y ,  and ' ' .. such that .. z , Yl, ",Yi gi+l(z, Yl, ", Y,) = 

9i+l(z' ,Yl ' ,  "",Y'i) and for some j < i, yj 4: yj. 

b. Measurable recall functions u 1, uz,"" exist, and there are z, z ' ,  Yl , ' " ,  Y~ such 

that 9t + i (z, y 1 , ' " ,  Yi) = 9, + 1 (z ' ,  y 1 , ' " ,  Y~) and 9~(z, y 1 , ' " ,  Yi- 1) ~ 9,(z' ,  y 1,"' ,  Y~- I). 

For case a ,  let m be the pure strategy whose first i moves are Y l , ' " ,  Y,, followed 

by the (i + 1)st move Yk, independently of the information available. Similarly, 

let m '  have as its first i + 1 moves Yl', '",  Y~, Yj'. Let �89 + �89 be the random 

strategy that agrees with m when to < �89 and with m '  when to > �89 The effective 

distribution of this strategy does not depend on z ,  and its transition probabilities 

for the (i + l)st move are the degenerate distributions at Yk and at y}, when the 

i first moves are given as Yt, "", Yt and y'~,-.., y~ respectively. No randomization 

strategy can have such transition probabilities, since/l ,+ 1 , being a function of  

gi+ 1, will assign the same measure to (z, Y l , ' " ,  Yi) as to (z', Y'I, "", Y~). 

For  case b, let both m and m '  follow Y l , ' " ,  Y~- 1 as the first i -  i moves. Choose 

a number t -r Y,, and let m~(#) be y~ when 9 = gi(z, Y l , ' " , Y ~ - l )  and t when 

9 = g l i ( z~Y l , ' " ,Y , - l ) .  Let m~(9) = t + y i - m ~ ( 9 ) .  For the next move, put 

mi+l(gl) = ui(g), and ml+l(gl) = t + Yt - ut(g). Defining �89 + �89 as in case a, 

we obtain the following effective distribution: the first i - 1 moves are constant. 

The next two are (Yi, Y,) and (t, yi) with probability �89 each, for the opponents '  

strategy z ,  and (y~,t) and (t , t)  with probability �89 each, for z.  Thus, given 

z , y  1, . . . , y , ,  the next move is surely y~, while given z , y  1, "" ,Yi ,  it is surely t .  

Again, equality of  #i+1 for these two sets of  arguments precludes a randomiza- 

tion strategy having such effective distributions. Q.E.D.  

7. Relation with convexity 

For joint distributions of  random strategies, there is a natural definition of  

convex combination. This definition makes the set of  all joint distributions of  

random strategies a convex set, as can easily be seen by mixing two strategies, 

ml and m 2 as follows: 
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let rn(co) = ml(co/t) ,  for co < t 

and re(co) = r n t ( ( c o - t ) / ( l - t ) ) ,  for co > t 

for constant 0 < t < 1. The effective distribution depends on the joint distri- 

bution linearly, so the set K of effective distributions of  all random strategies 

is also a convex set (in a different space). Now, compare it with the set C of ef- 

fective distributions of  all randomization strategies. By the lower arrow, K ~ C. 

By the upper arrow C ~ K  for games of perfect recall. By the proof  of  the con- 

verse theorem C, is not convex when the game is an R-game not of  perfect recall. 

Consequently, for R-games the following four statements are equivalent: 

1. Perfect recall, 

2. K = C ,  

3. C is convex, 

4. C ~ K .  

For all games, the pure strategies give rise to the extreme points of K,  and since 

pure strategies can also be regarded as special cases of  randomization strategies, 

C always contains the extreme points of K,  and the implication from 3 to 2 can 

be related, after introducing appropriate topologies, to the Krein-Milman theorem 

[5], but we shall not pursue this relation here. 

In a forthcoming paper we consider the implications of  allowing the time 

index i to range over non-well-ordered sets. In particular an example of  Dubins 

and Schwarz [3] set in the context of  an appropriate definition of randomization 

strategies for negative integer time, gives rise to a game of perfect recall, with 

K and C both convex, and K a proper subset of  C ,  (one randomization strategy 

yields an extreme point of  C which is not in K) and the lower arrow fails to hold. 
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